
Tool Demonstration:
FSolidM for Designing

Secure Ethereum Smart Contracts

Anastasia Mavridou1 and Aron Laszka2

1 Vanderbilt University
2 University of Houston

Accepted for publication in the proceedings of the 7th International Conference
on Principles of Security and Trust (POST 2018).

Abstract. Blockchain-based distributed computing platforms enable the
trusted execution of computation—defined in the form of smart con-
tracts—without trusted agents. Smart contracts are envisioned to have
a variety of applications, ranging from financial to IoT asset tracking.
Unfortunately, the development of smart contracts has proven to be
extremely error prone. In practice, contracts are riddled with security
vulnerabilities comprising a critical issue since bugs are by design non-
fixable and contracts may handle financial assets of significant value. To
facilitate the development of secure smart contracts, we have created the
FSolidM framework, which allows developers to define contracts as fi-
nite state machines (FSMs) with rigorous and clear semantics. FSolidM
provides an easy-to-use graphical editor for specifying FSMs, a code gen-
erator for creating Ethereum smart contracts, and a set of plugins that
developers may add to their FSMs to enhance security and functionality.
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1 Introduction

In recent years, blockchains have seen wide adoption. For instance, the mar-
ket capitalization of Bitcoin, the leading blockchain-based cryptocurrency, has
grown from $15 billion to more than $100 billion in 2017. The goal of the first
generation of blockchains was only to provide cryptocurrencies and payment sys-
tems. In contrast, more recent blockchains, such as Ethereum, strive to provide
distributed computing platforms [1,2]. Blockchain-based distributed computing
platforms enable the trusted execution of general purpose computation, imple-
mented in the form of smart contracts, without any trusted parties. Blockchains
and smart contracts are envisioned to have a variety of applications, ranging from
finance to IoT asset tracking [3]. As a result, they are embraced by an increasing
number of organizations and companies, including major IT and financial firms,
such as Cisco, IBM, Wells Fargo, and J.P. Morgan [4].
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However, the development of smart contracts has proven to be extremely
error prone in practice. Recently, an automated analysis of a large sample of
smart contracts from the Ethereum blockchain found that more than 43% of
contracts have security issues [5]. These issues often result in security vulnera-
bilities, which may be exploited by cyber-criminals to steal cryptocurrencies and
other digital assets. For instance, in 2016, $50 million worth of cryptocurrencies
were stolen in the infamous “The DAO” attack, which exploited a combination
of smart-contract vulnerabilities [6]. In addition to theft, malicious attackers
may also be able to cause damage by leading a smart contract into a deadlock,
which prevents account holders from spending or withdrawing their own assets.

The prevalence of smart-contract vulnerabilities poses a severe problem in
practice due to multiple reasons. First, smart contracts handle assets of signifi-
cant financial value: at the time of writing, contracts deployed on the Ethereum
blockchain together hold more than $6 billion worth of cryptocurrency. Second,
it is by design impossible to fix bugs in a contract (or change its functionality in
any way) once the contract has been deployed. Third, due to the “code is law”
principle [7], it is also by design impossible to remove a faulty or malicious trans-
action from the blockchain, which means that it is often impossible to recover
from a security incident.3

Previous work focused on alleviating security issues in existing smart con-
tracts by providing tools for verifying correctness [7] and for identifying com-
mon vulnerabilities [5]. In contrast, we take a different approach by developing a
framework, called FSolidM [9], which helps developers to create smart contracts
that are secure by design. The main features of our framework are as follows.

Formal Model: One of the key factors contributing to the prevalence of secu-
rity issues is the semantic gap between the developers’ assumptions about the
underlying execution semantics and the actual semantics of smart contracts [5].
To close this semantic gap, FSolidM is based on a simple, formal, finite-state ma-
chine (FSM) based model for smart contracts, which we introduced in [9]. The
model was designed to support Ethereum smart contracts, but it could easily be
extended to other platforms.

Graphical Editor: To further decrease the semantic gap and facilitate develop-
ment, FSolidM provides an easy-to-use graphical editor that enables developers
to design smart contracts as FSMs.

Code Generator: FSolidM provides a tool for translating FSMs into Solidity,
the most widely used high-level language for developing Ethereum contracts.
Solidity code can be translated into Ethereum Virtual Machine bytecode, which
can be deployed and executed on the platform.

Plugins: FSolidM enables extending the functionality of FSM based smart con-
tract using plugins. As part of our framework, we provide a set of plugins that
address common security issues and implement common design patterns, which
were identified by prior work [5,10,11]. In Table 1, we list these vulnerabilities
and patterns with the corresponding plugins.

3 It is possible to remove a transaction or hard fork the blockchain if the stakeholders
reach a consensus; however, this undermines the trustworthiness of the platform [8].
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Table 1. Common Smart-Contract Vulnerabilities and Design Patterns

Type Common Name FSolidM Plugin

Vulnerabilities
reentrancy [5,10] locking (Section 3)
transaction ordering [5,10] transition counter (Section 3)

Patterns
time constraint [11] timed transitions (Section 3)
authorization [11] access control (Section 3)

Open Source: FSolidM is open-source and available online (see Section 3).
The advantages of our framework, which helps developers to create secure

contracts instead of trying to fix existing ones, are threefold. First, we decrease
the semantic gap and eliminate the issues arising from it by providing a for-
mal model and an easy-to-use graphical editor. Second, since the process is
rooted in rigorous semantics, our framework may be connected to formal anal-
ysis tools [12,13]. Third, the code generator and plugins enable developers to
implement smart contracts with minimal amount of error-prone manual coding.

The rest of this paper is organized as follows. In Section 2, we present blind
auction as a motivating example, which we implement as an FSM-based smart
contract. In Section 3, we describe our FSolidM tool and its built-in plugins.
Finally, in Section 4, we offer concluding remarks and outline future work.

2 Defining Smart Contracts as FSMs

Consider as an example a blind auction (similar to the one presented in [14]), in
which a bidder does not send her actual bid but only a hash of it (i.e., a blinded
bid). A bidder is required to make a deposit—which does not need to be equal
to her actual bid—to prevent her from not paying after she has won the auction.
A deposit is considered valid if its value is higher than or equal to the actual
bid. A blind auction has four main states:
1. AcceptingBlindedBids: blinded bids and deposits may be submitted;
2. RevealingBids: bidders may reveal their bids (i.e., they can send their ac-

tual bids and the contract checks if the hash value is the same as the one
submitted in the previous state and if they made sufficient deposit);

3. Finished: the highest bid wins the auction; bidders can withdraw their
deposits except for the winner, who can withdraw only the difference between
her deposit and bid;

4. Canceled: bidders can retract bids and withdraw their deposits.
Since smart contracts have states (e.g., AcceptingBlindedBids) and provide

functions that allow other entities (e.g., contracts or users) to invoke actions
that change the current state of a contract, they can be naturally represented as
FSMs [15]. An FSM has a finite set of states and a finite set of transitions between
these states. A transition forces a contract to take a set of actions if the associated
conditions, i.e., the guards of the transition, are satisfied. Since such states and
transitions have intuitive meaning for developers, representing contracts as FSMs
provides an adequate level of abstraction for behavior reasoning.

Figure 1 presents the blind auction example in the form of an FSM. For sim-
plicity, we have abbreviated AcceptingBlindedBids, RevealingBids, Finished,
and Canceled to ABB, RB, F, and C, respectively. ABB is the initial state of the
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Fig. 1. Example FSM for blinded auctions.

Fig. 2. Versioning in FSolidM.

FSM. Each transition (e.g., bid, reveal, cancel) is associated to a set of ac-
tions that a user can perform during the blind auction. For instance, a bidder
can execute the bid transition at the ABB state to send a blind bid and a de-
posit value. Similarly, a user can execute the close transition, which signals
the end of the bidding period, if the associated guard now >= creationTime

+ 5 days evaluates to true. To differentiate transition names from guards, we
use square brackets for the latter. A bidder can reveal her bids by executing
the reveal transition. The finish transition signals the completion of the auc-
tion, while the cancelABB and cancelRB transitions signal the cancellation of
the auction. Finally, the unbid and withdraw transitions can be executed by
the bidders to withdraw their deposits. For ease of presentation, we omit from
Figure 1 the actions that correspond to each transition. For instance, during the
execution of the withdraw transition, the following action is performed amount

= pendingReturns[msg.sender].

Guards and actions are based on a set of variables (e.g., creationTime,
amount). These variables represent data, which can be of type: 1) contract data,
which is stored in the contract; 2) input data, which is received as transition
input; 3) output data, which is returned as transition output.

3 The FSolidM Tool

FSolidM is an open-source4, web-based tool that is built on top of WebGME [16].
FSolidM enables collaboration between multiple users during the development
of smart contracts. Changes in FSolidM are committed and versioned, which
enables branching, merging, and viewing the history of a contract (Figure 2).

4 https://github.com/FSolidM/smart-contracts

https://github.com/FSolidM/smart-contracts


FSolidM for Designing Secure Ethereum Smart Contracts 5

Fig. 3. The FSolidM model and code editors.

To generate the Solidity code of a smart contract using FSolidM, a user must
follow three steps: 1) specify the smart contract in the form of the FSM by using
the dedicated graphical editor of FSolidM; 2) specify attributes of the smart
contract such as variable definition, statements, etc. in the Property Editor or
in the dedicated Solidity code editor of FSolidM; 3) optionally apply security
patterns and functionality extensions, and finally, generate the Solidity code.
Figure 3 shows the graphical and code editors of the tool (for steps 1 and 2) and
the list of services (i.e., AddSecurityPatterns and SolidityCodeGenerator for
step 3) that are provided by FSolidM. We have integrated a Solidity parser5 to
check the syntax of the Solidity code that is given as input by the users.

Notice that in Figure 3, parts of the code shown in the code editor are darker
(lines 1-10) than other parts (lines 12-15). The darker lines of code include code
that was generated from the FSM model defined in the graphical editor and are
locked—cannot be altered in the code editor. The non-dark parts indicate code
that was directly specified in the code editor.

FSolidM provides mechanisms for checking if the FSM is correctly specified
(e.g., whether an initial state exists or not). FSolidM notifies developers of errors
and provides links to the erroneous nodes of the model (e.g., a transition or a
guard). Through the SolidityCodeEditor service, FSolidM provides an FSM-
to-Solidity code generator. Additionally, through the AddSecurityPatterns ser-
vice, FSolidM enables developers to enhance the functionality and security of
contracts conveniently by adding plugins to them. Our framework provides four
built-in plugins: locking, transition counter, timed transitions, and access con-
trol. Plugins can be simply added with a “click,” as shown in Figure 4.

Locking When an Ethereum contract calls a function of another contract, the
caller has to wait for the call to finish. This allows the callee—who may be
malicious—to exploit the intermediate state of the caller, e.g., by invoking a
function of the caller. This re-entrancy issue is one of the most well-known vul-
nerabilities, which was also exploited in the infamous “The DAO” attack.

To prevent re-entrancy, we provide a security plugin for locking the smart
contract. Locking eliminates re-entrancy vulnerabilities in a “foolproof” manner:
functions within the contract cannot be nested within each other in any way.

5 https://github.com/ConsenSys/solidity-parser

https://github.com/ConsenSys/solidity-parser
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Fig. 4. Running the AddSecurityPatterns.

Transition Counter If multiple functions calls are invoked around the same
time, then the order in which these calls are executed on the Ethereum blockchain
may be unpredictable. Hence, when a user invokes a function, she may be unable
to predict what the state and the values stored within a contract will be when
the function is actually executed. This issue has been referred to as “transaction-
ordering dependence” [5] and “unpredictable state” [10], and it can lead to var-
ious security vulnerabilities.

We provide a plugin that prevents unpredictable-state vulnerabilities by en-
forcing a strict ordering on function call executions. The plugin expects a tran-
sition number in every function as a parameter and ensures that the number is
incremented by one for each function execution. As a result, when a user invokes
a function with the next transition number in sequence, she can be sure that the
function is executed before any other state changes can take place.

Automatic Timed Transitions We provide a plugin for implementing time-
constraint patterns. We extend our language with timed transitions, which are
similar to non-timed transitions, but 1) their guards and assignments do not use
input or output data and 2) they include a number specifying transition time.

We implement timed transitions as a modifier that is applied to every func-
tion, and which ensures that timed transitions are executed automatically if their
time and data guards are satisfied. Writing such modifiers manually could lead
to vulnerabilities. For example, a developer might forget to add a modifier to a
function, which enables malicious users to invoke functions without the contract
progressing to the correct state (e.g., place bids in an auction even though the
auction should have already been closed due to a time limit).

Access Control In many contracts, access to certain transitions (i.e., functions)
needs to be controlled and restricted. For example, any user can participate in a
typical blind auction by submitting a bid, but only the creator should be able to
cancel the auction. To facilitate the enforcement of such constraints, we provide
a plugin that 1) manages a list of administrators at runtime (identified by their
addresses) and 2) enables developers to forbid non-administrators from accessing
certain functions.

4 Conclusion and Future Work

Blockchain-based decentralized computing platforms with smart-contract func-
tionality are envisioned to have a significant technological and economic impact
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in the future. However, if we are to avoid an equally significant risk of security
incidents, we must ensure that smart contracts are secure. To facilitate the de-
velopment of smart contracts that are secure by design, we created the FSolidM
framework, which enables designing contracts as FSMs. Our framework is rooted
in rigorous yet clear semantics, and it provides an easy-to-use graphical editor
and code generator. We also implemented a set of plugins that developers can
use to enhance the security or functionality of their contracts. In the future, we
plan to integrate model checkers and compositional verification tools into our
framework [12,13] to enable the verification of security and safety properties.
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A Demonstration of FSolidM

We provide a step-by-step demonstration of the FSolidM tool. In particular, we
demonstrate how to design, apply security patterns, and generate the code of
the Blind Auction smart contract. Since FSolidM is web-based, we are going
to have it running on a server so that every participant of the conference can
access it and use it during the presentation.

A.1 Step 1: Presentation of the FSolidM Environment

FSolidM is a web-based, open-source6 tool. The initial page of FSolidM is shown
in Figure 5. The user can navigate to the Contracts page by double-clicking on
the Contracts icon.

Fig. 5. FSolidM initial page.

Fig. 6. Contracts page.

The Contracts page is shown in Figure 6. The center panel is the Canvas.
The left side of the screen shows the Visualizer Selector options and below
them the Part Browser, which displays the concepts that can be instantiated
inside the Canvas. For instance, dragging and dropping a Contract from the

6 https://github.com/FSolidM/smart-contracts

https://github.com/FSolidM/smart-contracts
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Fig. 7. Versioning in FSolidM.

Fig. 8. The FSolidM language.

Part Browser creates a new contract on the Canvas. The top right corner of
the user interface is the Object Browser, which shows the composition hierarchy
of FSolidM starting at Root. Embeddable documentation can be added at every
level of this hierarchy. For instance, in Figure 6, we have added documentation
explaining how to create a New contract. Below the Object Browser is the
Property Editor, where attributes, preferences, and other properties of the
currently selected contract can be edited.

FSolidM provides a collaborative and versioned environment. Multiple users
can collaborate on the same smart contract simultaneously. Changes are imme-
diately broadcast to all users and everyone sees the same state. This is similar to
how Google Docs works, except that the models in FSolidM have a much richer
data model, which makes consistency management more challenging. Changes
in FSolidM are committed and versioned, which enables branching, merging,
and viewing the history of a contract. Figure 7 shows the history of the master

branch. During the demonstration, we are going to show how a user can create
a new branch and merge it into the master branch.
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A.2 Step 2: Presentation of the FSolidM Language

Next, we present the main elements of our FSM-based smart-contract language,
which is defined in FSolidM as a UML class diagram (Figure 8). By double-
clicking Meta in the Visualizer Selector shown in Figure 6, we navigate to
the language-specification of FSolidM. The behavior of a Contract is described
as an FSM. The State Base element is abstract and it can be instantiated
by either an InitialState or a State. Each contract must have exactly one
InitialState, which is enforced by the cardinality of the containment relation.
The Transition element is characterized by six attributes: 1) name, which is
inherited from Basic Element of our language, 2) the associated guards, the
3) input and 4) output data of the transition, the 5) statements, and finally,
the 6) tags. Similarly, the Timed Transition element is characterized by three
attributes: 1) guards, 2) statements, and 3) time.

A.3 Step 3: Designing a Blind Auction Smart Contract

Fig. 9. Designing a blind auction smart contract.

Next, we present how to
design a blind auction
contract as an FSM us-
ing FSolidM. After cre-
ating a new Contract

on the canvas shown in
Figure 6 (as described
in Step 1), the user
must specify a unique
name for this contract,
e.g., BlindAuction, in
the name attribute of the
Contract listed in the
Property Editor. Then,
the user creates the states
of the FSM (Figure 9) by
drag-and-dropping states
from the Part Browser.
By clicking on a state, the user may add a transition to another state or the same
state. For each transition, the user may specify its corresponding attributes, e.g.,
the guards, inputs, and statements at the Property Editor or at the dedicated
Solidity code editor that we have developed. The user may navigate to the code
editor by double-clicking SolidityCodeEditor in the Visualizer Selector.

Figure 10 shows the model and code editors and the equivalent representation
of the blind auction contract in the two editors. From the FSM shown in the
model editor, we generate equivalent Solidity code, which consists in the darker
parts of the code shown in the code editor. This part of the code is generated
automatically from the FSM and cannot be altered by the user in the code editor.
The user can only change the FSM in the model editor. The lighter parts of the
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Fig. 10. The FSolidM model and code editors.

code in the code editor represent parts of the code that the used has directly
defined in the code editor. For instance, the user may specify variables, transition
statements and guards, directly in the code editor. The code and model editors
are tightly integrated. Once a user makes a change in the model editor, the code
editor is updated and vice versa.

A.4 Optional Step 4: Applying Security Patterns

To apply security patterns and functionality extensions, a user must double-
click the AddSecurityPatterns service offered by the dropped down menu in
the upper left corner of the tool (Figure 10). Then, the widget shown in Figure
11 pops up, and the developer may pick the patterns to be applied.

Fig. 11. Running the AddSecurityPatterns.

Next, we discuss that plugins not only enhance security but also increase the
computational cost of transitions. Since users must pay a relatively high price
for computation performed on the public Ethereum platform, the computational
cost of plugins is a critical question. We measured and compared the computa-
tional cost of transitions in our blind auction contract without and with the
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Fig. 12. Transaction costs in gas without plugins (blue), with locking plugin (red),
with transition counter plugin (brown), and with both plugins (dark gray).

locking and transition counter plugins by using Solidity compiler version 0.4.17
with optimizations enabled.

We quantified computational cost of a transition as the gas cost of an Ethereum
transaction that invokes the function implementing the transition. Gas measures
the cost of executing computation on the Ethereum platform. The cost of de-
ploying our smart contract was 504,672 gas without any plugins, 577,514 gas
with locking, 562,800 gas with transition counter, and 637,518 gas with both.
Figure 12 shows the gas cost of each transition for all four combinations of the
two plugins. We make two key observations. First, computational overhead is
almost constant for both plugins and also for their combination. Second, the
computational overhead of the two plugins is additive.

A.5 Step 5: Generating the Solidity Code

To generate Solidity code a user must on the SolidityCodeGenerator service
offered by the dropped down menu in the upper left corner of the tool (Figure
10). Then, the widget shown in Figure 13 pops up, and the developer can click
on the Save & Run button to continue with the code generation.

If the code generation is successful, i.e., there are no specification errors in
the given input, then the widget shown in Figure 14 pops-up. The developer
can then click on the generated artifacts to download the generated Solidity
contract. If, on the other hand, the code generation is not successful due to
incorrect input, then, the widget shown in Figure 15 pops-up. As shown in
Figure 15, FSolidM lists the errors found in the specification of the contract with
detailed explanatory messages. Additionally, FSolidM provides links (through
Show node) that redirect the developer to the erroneous nodes of the contract.
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Fig. 13. Running the SolidityCodeGenerator.

Fig. 14. Successful Solidity code generation.

Fig. 15. Unsuccessful Solidity code generation due to incorrect input.
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