
From Partial to Global Assume-Guarantee
Contracts: Compositional Realizability Analysis

in FRET

Anastasia Mavridou1, Andreas Katis1, Dimitra Giannakopoulou2, David
Kooi3, Thomas Pressburger2, and Michael W. Whalen4

1 KBR, NASA Ames Research Center, CA, USA
2 NASA Ames Research Center, CA, USA

{anastasia.mavridou, andreas.katis, dimitra.giannakopoulou,

tom.pressburger}@nasa.gov
3 University of California, Santa Cruz, CA, USA dkooi@ucsc.edu

4 University of Minnesota, MN, USA whalen@cs.umn.edu

Abstract. Realizability checking refers to the formal procedure that
aims to determine whether an implementation exists, always comply-
ing to a set of requirements, regardless of the stimuli provided by the
system’s environment. Such a check is essential to ensure that the spec-
ification does not allow behavior that can force the system to violate
safety constraints. In this paper, we present an approach that decom-
poses realizability checking into smaller, more tractable problems. More
specifically, our approach automatically partitions specifications into sets
of non-interfering requirements. We prove that checking whether a speci-
fication is realizable reduces to checking that each partition is realizable.
We have integrated realizability checking and implemented our decompo-
sition approach within the open-source Formal Requirements Elicitation
Tool (FRET). A FRET user may check the realizability of a specification
monolithically or compositionally. We evaluate our approach by compar-
ing monolithic and compositional checking and showcase the strengths of
our decomposition approach on a variety of industrial-level case studies.

1 Introduction

Defining requirements for a complex system is a challenging, error-prone task.
The focus of this paper is on ensuring consistency of system component re-
quirements, thus building a solid foundation for subsequent system-level anal-
ysis [12,13,55,4]. For reactive systems, which interact with an uncontrollable
environment, consistency must be established for all reasonable inputs from the
environment, leading to the notion of realizability [50]. Realizability checking,
however, comes with challenges. While optimal algorithms exist for finite state
problems over subsets of Linear Temporal Logic specifications (LTL) [49,18],
scalability issues can make the analysis impractical for realistic systems, and the
use of infinite data types can render the entire problem undecidable [20,29].

This work makes the following contributions for checking realizability:

1

1. a novel compositional theoretical framework to check realizability of a global
contract through smaller, more tractable parts, named partial contracts;

2. an algorithm that identifies, for a global system contract, equivalent partial
contracts that can be checked for realizability instead of the global one;

3. implementation of our framework in the open-source Formal Requirements
Elicitation Tool FRET [23], and its evaluation on industrial-level projects.

Partial contracts describe requirements that observe only a subset of a global
system state. Partial-contract realizability then introduces the notion of realiz-
ability of a system with respect to a set of partial contracts. We show that
partial-contract realizability is equivalent to checking that every partial con-
tract is realizable, when partial contracts are non-interfering, meaning that they
observe disjoint sets of system state variables. Finally, we provide conditions
under which checking realizability of a global contract is equivalent to partial-
contract realizability. This equivalence enables us to: 1) ensure realizability of a
global contract by checking that each one of its partial contracts is realizable,
and 2) when a partial contract is unrealizable, conclude that the global contract
is also unrealizable.

Our decomposition algorithm automatically computes partial contracts that
fit the conditions of our theory, based on the notion of connected components
for undirected graphs. The evaluation of our compositional approach showcases
several benefits as compared to monolithic realizability analysis. Decomposition
is key for both scalability and performance of realizability analysis. Moreover,
when both monolithic and compositional analyses fail to complete, compositional
analysis may still be able to return results for some of the partial contracts.
Finally, for unrealizable contracts, our approach is able to attribute the causes
of unrealizability to partial contracts, which are generally easier to debug.

Specification decomposition has also been studied, independently, in a recent
work by Finkbeiner et al. [17], in the context of reactive synthesis. Even though
the theoretical formulation of the two works is different due to the respective
settings in which they have been developed, they explore similar avenues. We
dedicate Subsection 6.2 of our evaluation section to providing a detailed com-
parison of the two approaches.

2 Liquid Mixer System Example

We use as running example the controller of a liquid mixing system [35] (see
Figure 1), whose behavior must satisfy the 12 requirements shown in Table 1.
To relate our approach with the EARS-CTRL approach presented in [35], we
took the 12 requirements expressed in EARS-CTRL and translated them into
FRETish, the requirements language of FRET.

A FRETish requirement consists of up to six fields: scope, condition,
component*, shall*, timing, and response*. Mandatory fields are indicated
by an asterisk. component specifies the component that the requirement refers
to. shall is used to express that the component’s behavior must conform to the
requirement. response is a Boolean condition that the component’s behavior

2

Table 1: Liquid mixer system requirements in English and FRETish.
Req ID Original Requirement Text Requirement in FRETish
[LM-001] While not liquid level 1 is reached, when start

button is pressed the liquid mixer controller shall
open valve 0

when start button the liquid mixer shall immedi-
ately satisfy if ! liquid level 1 then valve 0

[LM-002] When liquid level 1 is reached occurs, the liquid
mixer controller shall close valve 0

when liquid level 1 the liquid mixer shall imme-
diately satisfy ! valve 0

[LM-003] While not liquid level 2 is reached, when liquid
level 1 is reached the liquid mixer controller shall
open valve 1 until emergency button is pressed.

when liquid level 1 the liquid mixer shall un-
til emergency button satisfy if ! liquid level 2 then
valve 1

[LM-004] When liquid level 2 is reached occurs, the liquid
mixer controller shall close valve 1.

when liquid level 2 the liquid mixer shall imme-
diately satisfy ! valve 1

[LM-005] When liquid level 2 is reached occurs, the 60 sec
timer shall start.

when liquid level 2 the liquid mixer shall imme-
diately satisfy timer 60sec start

[LM-006] When liquid level 2 is reached happens, liquid
mixer controller shall start stirring motor until
60 second timer expires or emergency button is
pressed.

when liquid level 2 the liquid mixer shall until (
timer 60sec expire | emergency button) satisfy stir-
ring motor

[LM-007] When 60 second timer expires occurs, the 120 sec
timer shall start.

when timer 60sec expire the liquid mixer shall

immediately satisfy timer 120sec start
[LM-008] When 60 second timer expires happens, the liquid

mixer controller shall open valve 2 until 120 sec
timer expires or emergency button is pressed.

when timer 60sec expire the liquid mixer shall

until (timer 120sec expire | emergency button) sat-
isfy valve 2

[LM-009] When emergency button is pressed occurs, the
liquid mixer controller shall close valve 0.

when emergency button the liquid mixer shall im-
mediately satisfy ! valve 0

[LM-010] When emergency button is pressed occurs, the
liquid mixer controller shall close valve 1.

when emergency button the liquid mixer shall im-
mediately satisfy ! valve 1

[LM-011] When emergency button is pressed occurs, the
liquid mixer controller shall close valve 2.

when emergency button the liquid mixer shall im-
mediately satisfy ! valve 2

[LM-012] When emergency button is pressed occurs, the
liquid mixer controller shall stop stirring motor.

when emergency button the liquid mixer shall im-
mediately satisfy ! stirring motor

must satisfy. scope specifies the period when the requirement holds. The op-
tional condition field is a Boolean expression that further constrains when the
response shall occur. The timing field, e.g., always, after N time units, specifies
when the response shall happen, subject to condition and scope.

Fig. 1: Liquid Mixing System (figure taken
from Lúcio et al. [35]).

The original text of the Liq-
uid Mixer requirements and their
FRETish versions are shown in Ta-
ble 1. We used the following vari-
ables to write requirement [LM-001]
in FRETish: 1) liquid level 1 that
evaluates to true when liquid level 1 is
reached; 2) start button that becomes
true when the start button is pressed;
3) valve 0 that evaluates to true while
valve 0 is open. This requirement refers
to the liquid mixer component. We
omit the scope, which means that the requirement holds during the entire execu-
tion. FRET conditions trigger a requirement when their corresponding boolean
expression becomes true from false. In this case, every time start button becomes
true (from false) the response if ! liquid level 1 then valve 0 must hold.

3

3 Background on Realizability

This section provides background on modeling requirements as Assume-Guarantee
contracts and on the notion of realizability.

3.1 Assume-Guarantee (AG) Contracts

We rely on the notion of AG contracts as defined by previous work on JSyn and
JSyn-vg [20,29]. We use two types state and inputs for a transition system (𝐼, 𝑇)
where predicate 𝐼(𝑠) : state → bool denotes the set of initial states, and predicate
𝑇 (𝑠, 𝑎, 𝑠′) : state× inputs× state → bool is the system’s transition relation from
states 𝑠 to primed states 𝑠′, given inputs 𝑎. State variables represent both internal
and output variables of the system.

A contract (𝐴,𝐺) for system (𝐼, 𝑇) consists of an assumption predicate
𝐴(𝑠, 𝑎) : state × inputs → bool and a guarantee 𝐺, made up of two predicates:
𝐺𝐼(𝑠) : state → bool and 𝐺𝑇 (𝑠, 𝑎, 𝑠′) : state × inputs × state → bool, capturing
initial-state and transitional guarantees, respectively. In practice, as described
in Section 5, 𝐴 and 𝐺 may be expressed as sets of predicates, with 𝐴 and 𝐺
corresponding to their conjunctions. Note that, any behavior following an envi-
ronmental input that violates the contract’s assumptions is unrestricted by the
contract.

Consider the FRETish liquid mixer system requirements of Table 1. The
state variables are: {stirring motor, valve 0, valve 1, valve 2, timer 60sec start,
timer 120sec start}. The input variables are: {emergency button, start button,
liquid level 1, liquid level 2, timer 60sec expire, timer 120sec expire}. All vari-
ables involved in this system are of type boolean. Let us take input variable
liquid level 1, for example. We use liquid level 1 and !liquid level 1 to represent
a true or false valuation for it.

The liquid mixer system does not involve any assumptions or initial guaran-
tees, so for all 𝑠, 𝑎, 𝐴(𝑠, 𝑎) = 𝑡𝑟𝑢𝑒 and 𝐺𝐼(𝑠) = 𝑡𝑟𝑢𝑒. Moreover, 𝐺𝑇 (𝑠, 𝑎, 𝑠′) =
𝑡𝑟𝑢𝑒 if and only if the transition satisfies all requirements of Table 1, i.e., their
conjunction. The FRET tool automatically produces requirement formalizations
in a variety of languages, as well as generates and exports analysis code, e.g.,
CoCoSpec5 code [40]. For the purposes of this work, we have extended the code
generation functionality of FRET to support Lustre code that is digested by
the JSyn and JSyn-vg procedures of the JKind model checker. The generated
Lustre code captures the transition relation of an AG contract.

3.2 Realizability

An AG contract is realizable if there exists a system implementation that sat-
isfies the contract guarantees for all assumption-complying stimuli provided by
the environment. As mentioned above, any behavior following an environmental
input that violates the contract’s assumptions is unrestricted by the contract.

5 CoCoSpec [9] is a contract-based extension of the Lustre synchronous language.

4

Fig. 2: Partial Assume-Guarantee Contracts.

Definition 1 (Viability of an AG contract). A set of viable [20] system
responses is defined coinductively, as the greatest fixed point of the following
equation:

Viable𝐴𝐺(𝑠) = ∀𝑎. (𝐴(𝑠, 𝑎) ⇒ ∃𝑠′. 𝐺𝑇 (𝑠, 𝑎, 𝑠′) ∧ Viable𝐴𝐺(𝑠′))

Realizability of a contract (𝐴,𝐺) is then defined as follows:

Definition 2 (Realizability of an AG contract).

Realizable𝐴𝐺
def
= ∃𝑠.𝐺𝐼(𝑠) ∧ Viable𝐴𝐺(𝑠)

For realizability checking, we use a combination of two off-the-shelf algo-
rithms, namely JSyn [20,30] and JSyn-vg [29]. These algorithms are automated;
the engineer does not need to be actively involved during analysis. Moreover,
both algorithms are agnostic with respect to the theories that may be exercised
within the specification, allowing for a wide range of supported expressions. As
of this paper, JSyn and JSyn-vg employ techniques that perform over the theo-
ries of Linear Integer and Real Arithmetic (LIRA). Since the input specification
can admit infinite theories, the overall problem of realizability checking is unde-
cidable. Problem decomposition is therefore an attractive means of dividing the
original challenge into subproblems of smaller size. Nevertheless, decomposition
over quantified formulas is not straightforward.

4 Decomposing Realizability

Our theory of compositional realizability checking is based on the notion of
partial contracts, i.e., contracts that observe only part of the state of a target
system. We use the example of Figure 2 to provide intuition for the concepts that
we present. In the example, a component 𝐶, is made up of components 𝐶1 and
𝐶2, each with their individual contracts (𝐴1, 𝐺1) and (𝐴2, 𝐺2). Note that we do
not consider the case where 𝐶1 and 𝐶2 communicate with each other; in other
words, outputs6 of 𝐶1 do not intersect with input variables of 𝐶2, and vice versa.
Note also that we study the simple case where the components share inputs. We
can generalize this case later. In the context of component 𝐶, contracts (𝐴1, 𝐺1)
and (𝐴2, 𝐺2) are partial contracts, as defined below.

6 Note that output and internal variables are considered state variables.

5

Let us assume a set of types 𝑇 = {𝑇1, . . . , 𝑇𝑘} and a set of typed state

variables 𝑆𝑉 = {𝑠1 : 𝑇1, . . . , 𝑠𝑘 : 𝑇𝑘}. Let STATES
def
= 𝑇1 × . . . × 𝑇𝑘. We

use 𝑘-dimensional vectors (𝑣(𝑠1), . . . , 𝑣(𝑠𝑘)) to represent states that range over
STATES, where 𝑣(𝑠𝑖) ∈ 𝑇𝑖 is the valuation of variable 𝑠𝑖.

For a state 𝑠 = (𝑣(𝑠1), ..., 𝑣(𝑠𝑘)) ∈ STATES, and a subset 𝑆𝑉𝑖 ⊆ 𝑆𝑉 over
some of its state variables:

𝑠@𝑆𝑉𝑖
def
= (𝑣(𝑠𝑗) | 𝑠𝑗 ∈ 𝑆𝑉𝑖)

In other words, operator @ maps a state vector 𝑠 to a sub-vector based on the
subset of variables in 𝑆𝑉𝑖. We can extend this operation to sets of states:

STATES@𝑆𝑉𝑖
def
= {𝑠𝑖 | ∃𝑠 ∈ STATES. 𝑠𝑖 = 𝑠@𝑆𝑉𝑖}.

Let (𝐼, 𝑇) be a transition system over 𝑆𝑉 , with 𝐼(𝑠) : STATES → bool
and 𝑇 (𝑠, 𝑎, 𝑠′) : STATES × inputs × STATES → bool. In Section 3, we defined
AG contracts (𝐴,𝐺) over the states and inputs of a system. In this section,
we consider partial contracts (𝐴𝑖, 𝐺𝑖) that only refer to some state variables
𝑆𝑉𝑖 ⊆ 𝑆𝑉 of the system, i.e.:

𝐴𝑖 : STATES@𝑆𝑉𝑖 × inputs → bool

𝐺𝐼𝑖 : STATES@𝑆𝑉𝑖 → bool

𝐺𝑇𝑖 : STATES@𝑆𝑉𝑖 × inputs× STATES@𝑆𝑉𝑖 → bool

In our example of Figure 2, contracts (𝐴1, 𝐺1) and (𝐴2, 𝐺2) are partial con-
tracts for component 𝐶, because they relate to its sub-components, and as such,
they each observe a subset of 𝐶’s state variables, namely 𝑜1, and 𝑜2, respec-
tively. As our goal is contract decomposition for realizability, we are particularly
interested to discover conditions under which contracts (𝐴1, 𝐺1) and (𝐴2, 𝐺2)
can be equivalently represented by a global contract (𝐴,𝐺) where 𝐴 = 𝐴1 ∧𝐴2

and 𝐺 = 𝐺1 ∧ 𝐺2, meaning that 𝐺𝐼 = 𝐺𝐼1 ∧ 𝐺𝐼2 and 𝐺𝑇 = 𝐺𝑇1 ∧ 𝐺𝑇2. We
have identified two challenges in addressing this goal: guarantee and assumption
interference.

Subcontracts sharing state variables may cause guarantee interference. In
our example, imagine that 𝑜1 and 𝑜2 are the same variable. Then finding an
implementation for (𝐴1, 𝐺1) and an implementation for (𝐴2, 𝐺2) does not mean
that there exists one for (𝐴,𝐺), since these implementations may be based on
conflicting valuations for the common output. Because of guarantee interference,
checking realizability of a global contract by checking realizability of its partial
contracts may be too optimistic, in the sense that it may return false positives.

In previous work, we proposed a decomposition approach based on connected
components to avoid common state variables [33]. This approach was applied
to requirements expressed as sets of guarantees, i.e., they were not taking AG
contracts into account. In terms of assumptions, we observe that common input
and state variables may create assumption interference. In our example, let 𝑖 be
an input variable, and let 𝐴1 = (𝑖 > 0) and 𝐴2 = (𝑖 < 3). When 𝑖 = 5, 𝐴1 holds
but 𝐴2 does not. Realizability of (𝐴1, 𝐺1) will still require an implementation
that conforms to 𝐺1 for 𝑖 = 5, but realizability of (𝐴,𝐺) will not, because 𝐴2

is violated. Because of assumption interference, checking realizability of a global

6

contract by checking realizability of its partial contracts may be too pessimistic,
in the sense that it may return false negatives.

This work builds upon our previous work [33] by examining how to decompose

global contracts in the presence of assumptions. Let 𝐴𝐺𝑛
1

def
= {(𝐴𝑖, 𝐺𝑖) : 𝑖 =

1, . . . , 𝑛} represent a set of 𝑛 partial AG contracts for a system over STATES
and inputs. We start by introducing a notion of realizability PRealizable𝐴𝐺𝑛

1
for

𝐴𝐺𝑛
1 . Theorem 1 then shows that in the context of contracts that do not share

state, PRealizable𝐴𝐺𝑛
1

is equivalent to ensuring that every subcontract (𝐴𝑖, 𝐺𝑖)
is realizable. Finally, Theorem 2 uses these results to decompose the realizability
of a contract (𝐴,𝐺) into realizability of subcontracts. Due to space limitations,
the proofs of Theorems 1 and 2 are provided in [22].

We first extend the notions of viability and realizability presented in Section
3 for a set of partial contracts 𝐴𝐺𝑛

1 as follows.

Definition 3 (Partial-contract viability). A set of viable system responses
with respect to a set of partial contracts is defined coinductively, as the greatest
fixed point of the following equation:

PViable𝐴𝐺𝑛
1
(𝑠) = ∀𝑎 : inputs.

(∨𝑛
𝑖=1𝐴𝑖(𝑠@𝑆𝑉𝑖, 𝑎)) ⇒

∃𝑠′.[(∧𝑛
𝑖=1(𝐴𝑖(𝑠@𝑆𝑉𝑖, 𝑎) ⇒ 𝐺𝑇𝑖(𝑠@𝑆𝑉𝑖, 𝑎, 𝑠

′@𝑆𝑉𝑖))) ∧ PViable𝐴𝐺𝑛
1
(𝑠′)]

Intuitively, each partial contract (𝐴𝑖, 𝐺𝑖) imposes constraints on how a subset
of the state variables must evolve. When at least one assumption 𝐴𝑖(𝑠@𝑆𝑉𝑖, 𝑎)
holds, then constraints are imposed on the state transition. Note that when a
system consists of a single contract (𝐴1, 𝐺1) where 𝑆𝑉1 = 𝑆𝑉 , Definition 3
becomes equivalent to Definition 1.

We define realizability of a set of partial contracts 𝐴𝐺𝑛
1 as:

Definition 4 (Partial-contract Realizability).

PRealizable𝐴𝐺𝑛
1

def
= ∃𝑠. ∧𝑛

𝑖=1 𝐺𝐼𝑖(𝑠@𝑆𝑉𝑖) ∧ PViable𝐴𝐺𝑛
1
(𝑠)

Following our observations of [33], we call a non-interfering contract set over
𝑆𝑉 , a set of partial contracts (𝐴𝑖, 𝐺𝑖) over 𝑆𝑉𝑖 iff the sets 𝑆𝑉𝑖 partition 𝑆𝑉 . In
other words, the partial contracts have no common state variables and together
they cover 𝑆𝑉 . For non-interfering contract sets, realizability can be decom-
posed, following Theorem 1 below.

Theorem 1. Let 𝐴𝐺𝑛
1 be a non-interfering contract set. Then:

(∧𝑛
𝑖=1Realizable𝐴𝑖𝐺𝑖

) ⇔ PRealizable𝐴𝐺𝑛
1

In other words, for non-interfering contract sets, partial-contract realizabil-
ity is equivalently decomposed into realizability of the individual partial con-
tracts. It remains to discover conditions under which partial-contract realiz-
ability coincides with global contract realizability. By comparing the definitions
of Viable𝐴𝐺 and PViable𝐴𝐺𝑛

1
, a main difference that stands out is ∧𝑛

𝑖=1𝐴𝑖 vs
∨𝑛
𝑖=1𝐴𝑖. So we examine the case where ∧𝑛

𝑖=1𝐴𝑖 ≡ ∨𝑛
𝑖=1𝐴𝑖, which is equivalent to

7

01 02

03

04 05

09 10 07

08

11

06

12

𝑣 0

𝑣 0 𝑣 0 𝑣 1

𝑣 1

𝑣 1 𝑣 2 𝑠𝑚

Fig. 3: liquid mixer connected components. We use the last two digits of req. names,
and abbreviate valve x to v x, stirring motor to sm.

𝐴1 ≡ 𝐴2 ≡ . . . ≡ 𝐴𝑛 (from Boolean algebra). Additionally, since 𝐴 = ∧𝑛
𝑖=1𝐴𝑖,

it follows that 𝐴 ≡ 𝐴1 ≡ 𝐴2 ≡ . . . ≡ 𝐴𝑛. Since the partial contracts (𝐴𝑖, 𝐺𝑖)
are non-interfering, they are defined over state variable sets 𝑆𝑉𝑖 that partition
𝑆𝑉 . For all the assumptions 𝐴𝑖 to be equivalent under all circumstances, these
assumptions, including assumption 𝐴, must be independent of state. An as-
sumption 𝐴(𝑠, 𝑎) : state × inputs → bool is considered independent of state, iff
∀𝑠1, 𝑠2 ∈ state,∀𝑎 ∈ inputs. 𝐴(𝑠1, 𝑎) = 𝐴(𝑠2, 𝑎). We abbreviate 𝐴(*, 𝑎) by 𝐴(𝑎).
The following theorem captures these observations.

Theorem 2. Let (𝐴,𝐺) be an AG contract over state variable set 𝑆𝑉 , with
𝐴 independent of state, and let (𝐴,𝐺𝑖) with 𝑖 = 1 . . . 𝑛, be a non-interfering
contract set over state variable sets 𝑆𝑉𝑖, where 𝐺 = ∧𝑛

𝑖=1𝐺𝑖 (i.e., 𝐺𝐼 = ∧𝑛
𝑖=1𝐺𝐼𝑖

and 𝐺𝑇 = ∧𝑛
𝑖=1𝐺𝑇𝑖). Then Realizable𝐴𝐺 ≡ (∧𝑛

𝑖=1Realizable𝐴𝐺𝑖
).

5 Connected Components

In this section, we present one approach to automatically decomposing an assume-
guarantee contract (𝐴,𝐺) into an equivalent set of partial contracts (𝐴,𝐺𝑖) per
the conditions of Theorem 2. As discussed, Theorem 2 requires the assumption
𝐴 to be independent of state. Consequently, to obtain non-interfering contracts,
we only need to consider guarantees.

More specifically, we decompose an assume-guarantee contract that fits the
conditions of Theorem 2 by splitting the guarantees 𝐺 based on the notion of
connected components [25,54] for undirected graphs. As seen in Figure 3, the
connected components of a graph essentially represent separated pieces of the
graph. Two vertices belong to the same connected component if and only if there
exists some path between them.

As discussed in Section 3, AG contracts (𝐴,𝐺) are typically expressed as sets
of assumption and guarantee predicates, with 𝐴 and 𝐺 corresponding to their
respective conjunctions. More formally, let 𝑅𝐺𝐼 and 𝑅𝐺𝑇 be sets of predicates
that define 𝐺, meaning that 𝐺𝐼 =

⋀︀
𝑅𝑖∈𝑅𝐺𝐼

𝑅𝑖, and 𝐺𝑇 =
⋀︀

𝑅𝑖∈𝑅𝐺𝑇
𝑅𝑖. We

use the set 𝑅 = 𝑅𝐺𝐼 ∪ 𝑅𝐺𝑇 to represent all guarantee predicates involved in
𝐺, without differentiating between initial state and transitional guarantees. We
refer to elements of set 𝑅 as requirements.

A requirements graph for 𝑅 is an undirected graph (𝑉,𝐸), which is built
as follows. Each vertex in 𝑉 corresponds to a requirement in 𝑅. If the state
variables referenced by two requirements overlap, their corresponding vertices in

8

the graph are connected by an edge in 𝐸. By computing connected components
in 𝑅, we are able to decompose the original specification into partial contracts.

Figure 3 illustrates the connected components for the liquid mixer sys-
tem. The components partition the requirement state variables, namely
valve 0, valve 1, valve 2, timer 60sec start (referenced only by [LM-005]),
timer 120sec start (referenced only by [LM-007]), and stirring motor. Let us
now formally present our connected component approach.

Let 𝑅 be the set of requirements in an AG contract (𝐴,𝐺) over state variables
in 𝑆𝑉 , as described previously. For 𝑅𝑖 ∈ 𝑅, we use 𝑆𝑉𝑅𝑖 to denote the state
variables that are referenced by requirement 𝑅𝑖. For initial state guarantees, this
means that ∀𝑠1, 𝑠2 ∈ STATES. (𝑠1@𝑆𝑉𝑅𝑖 = 𝑠2@𝑆𝑉𝑅𝑖) ⇒ 𝑅𝑖(𝑠1) = 𝑅𝑖(𝑠2). For
each 𝑅𝑖 we can therefore define the predicate 𝑅𝑖@𝑆𝑉𝑅𝑖 that behaves as 𝑅𝑖, but
has lower dimensionality when 𝑆𝑉𝑅𝑖 ⊂ 𝑆𝑉 :

∀𝑠𝑖 ∈ STATES@𝑆𝑉𝑅𝑖.

𝑅𝑖@𝑆𝑉𝑅𝑖(𝑠𝑖)
def
= ∃𝑠 ∈ STATES. ((𝑠@𝑆𝑉𝑅𝑖 = 𝑠𝑖) ∧𝑅𝑖(𝑠)).

The above notations and definitions naturally extend to transitional guarantees.

Definition 5 (Requirements Graph). A requirements graph 𝑅𝐺 is an undi-
rected graph whose vertices are requirements 𝑅𝑖 ∈ 𝑅 and with an edge (𝑅𝑖, 𝑅𝑗)
between every pair of requirements 𝑅𝑖 and 𝑅𝑗 that share at least one state vari-
able; that is, 𝑆𝑉𝑅𝑖 ∩ 𝑆𝑉𝑅𝑗 ̸= ∅. Notice that we do not consider input variables
for the construction of this graph.

Definition 6 (State-Connected Component (SCC)). Let 𝑅 be a set of re-
quirements, and 𝑅𝐺 be its corresponding requirements graph. A State-Connected
Component is a tuple 𝐶 = (𝑅𝑐, 𝑆𝑉𝑐) where

– 𝑅𝑐 ⊆ 𝑅 is the set of requirements in a connected component of 𝑅𝐺; that is,
there is a connected path of edges between each pair of requirements in 𝑅𝑐

and no superset of 𝑅𝑐 also has this property.
– 𝑆𝑉𝑐 is the set of state variables that are mentioned in any requirement in

𝑅𝑐; that is, 𝑆𝑉𝑐 =
⋃︀

𝑅𝑖∈𝑅𝑐

𝑆𝑉𝑅𝑖.

State-connected components can be computed with a connected component
algorithm. For example, our framework implements Tarjan’s classic connected
components algorithm [25] with an 𝑂(|𝑉 | + |𝐸|) complexity. State-connected
components can then be used to create AG contracts as follows.

Definition 7 (Connected AG Contract). Let (𝐴,𝐺) be an AG contract over
state variables 𝑆𝑉 , where 𝐴 is independent of state. Let 𝑅 = 𝑅𝐺𝐼 ∪𝑅𝐺𝑇 be the
contract’s set of requirements, with its corresponding requirements graph 𝑅𝐺.
Each state-connected component 𝐶 = (𝑅𝑐, 𝑆𝑉𝑐) in 𝑅𝐺 defines a Connected AG
Contract (𝐴𝑐, 𝐺𝑐), as follows:

– ∀𝑠 ∈ STATES@𝑆𝑉𝑐,∀𝑎 ∈ inputs. 𝐴𝑐(𝑠, 𝑎) = 𝐴(𝑎).
– 𝐺𝐼𝑐 =

⋀︀
𝑅𝑖∈(𝑅𝑐∩𝑅𝐺𝐼)

𝑅𝑖@𝑆𝑉𝑐 is 𝐺𝑐’s initial-state guarantee predicate.

9

Table 2: Case studies statistics. The “Monolithic” and “Total SCC” columns record
the monolithic and compositional (SCC) analysis time in seconds. SCC times are de-
noted by “N/A” if decomposition was not successful.

Project Benchmark #Reqs #SCCs
Realizable? Monolithic Total SCC
JSyn JSyn-vg JSyn JSyn-vg JSyn JSyn-vg

Example liquid mixer 12 6 8 8 0.50 10.27 2.47 5.85
GPCA Infusion Manager 26 1 8 8 0.40 10.76 N/A N/A
QFCS FCC 9 7 4 ? 53.31 T/O 4.12 T/O + 6.38
QFCS FCC (inlined) 79 38 4 4 1.11 T/O 13.10 16.41
QFCS OSAS 10 2 8 8 1.82 T/O 2.96 T/O + 1.12
QFCS OSAS (inlined) 190 21 8 8 1.32 T/O 10.83 640.89
LMCPS AP 13 3 ? ? 0.40 T/O 1.42 T/O + 8.68
LMCPS FSM 13 3 8 8 0.42 1524.82 3.51 6.74
LMCPS EB 5 2 ? ? 1.41 1.01 1.62 1.39
LMCPS NN 4 1 ? ? 55.80 269.87 N/A N/A
LMCPS REG 10 5 ? 4 286.14 99.52 422.52 5.72
LMCPS TSM 6 1 8 4 3.33 242.67 N/A N/A

4: realizable 8: unrealizable ?: unknown T/O: timeout (12 hours)

– 𝐺𝑇𝑐 =
⋀︀

𝑅𝑖∈(𝑅𝑐∩𝑅𝐺𝑇) 𝑅𝑖@𝑆𝑉𝑐 is 𝐺𝑐’s transitional guarantee predicate.

By construction, the state variables over which individual connected AG
contracts are defined partition the set of system state variables. Hence, connected
AG contracts are partial contracts that can be used to decompose realizability
checking, according to Theorem 2.

Of the 6 connected components in liquid mixer (Figure 3), only 1 was found
to be unrealizable, consisting of requirements [LM-001], [LM-002] and [LM-
009]. Thus, we were able to localize and identify the conflict between [LM-001]
and [LM-009], a result consistent with the findings by Lúcio et al. [35].

6 Case Studies

We applied our compositional approach on three multi-component, industrial-
level projects7. The different components/benchmarks and number of require-
ments of each project are shown in Table 2. Next, we describe each project.
Generic Infusion Pump (GPCA): The Generic Infusion Pump Research
Project [2] is a joint effort by the United States Food and Drug Administration
(USFDA), Hutchison China MediTech (Chi-Med), CIMIT [1] and ten universi-
ties to identify best software engineering practices in the development of med-
ical devices. The Generic Patient Controlled Analgesic (GPCA) infusion pump
has been previously developed and formally analyzed using the AGREE frame-
work [46,45]. This study used the Infusion Manager subcomponent, previously
shown unrealizable by Gacek et al. [20] through the use of the JSyn algorithm.
The subcomponent contains 12 requirements.

We first translated the original specification into FRETish, and created 26
(as opposed to 12) requirements. This difference is mainly due to our choice of
using FRET’s inherent support for modes through the scope field. The original

7 Datasets are available upon request. Please email the authors.

10

contract used a single variable Current System Mode with 8 different values to
model the 8 component modes. In FRET, it is more natural to use 8 different
mode variables instead, and avoid mixing properties of different modes in a single
requirement. As an example, consider the following requirement:

G1
def
= (Current System Mode’ ≥ 0) ∧ (Current System Mode’ ≤ 8) ∧

(Current System Mode’ = 0 ⇒ Commanded Flow Rate’ = 0) ∧
(Current System Mode’ = 1 ⇒ Commanded Flow Rate’ = 0)

which gets decomposed into three requirements G11, G12, and G13, corre-
sponding to the first, second and third line in the original contract8. Require-
ment G11 ensures that the system is in at least one of the 8 modes at any time.
Requirements G12 and G13 define component behavior when in mode 0 and 1,
respectively. We added requirements to ensure mutual exclusion between modes,
something that was not needed with a single mode variable. We used KIND 2 [10]
to show equivalence between our requirements and the original specification.
NASA’s Quad-Redundant Flight Control System (QFCS): QFCS is a
component in NASA’s Transport Class Model aircraft simulation [26]. It is com-
posed of four cross-checking flight control computers (FCC), and contains spec-
ifications regarding the control laws and sensing properties of the aircraft. It
has been used in the past for the purposes of requirements analysis within the
Assume-Guarantee Reasoning Framework (AGREE) [12], both in terms of com-
positional verification [3] as well as realizability checking and synthesis through
JKind [20,29]. Compared to the latter work, our compositional approach yields
new information, that would otherwise be impossible to derive using the mono-
lithic algorithms in JKind. We present new results on the FCC (9 requirements)
and Output Signal Analysis and Selection (OSAS, 10 requirements) contracts.
For this case study, we did not write the requirements in FRET but directly
used the provided Lustre specifications to perform decomposition and analysis.
Lockheed Martin CPS Challenge Problems (LMCPS): LMCPS is a
set of industrial Simulink model benchmarks and natural language require-
ments [15,16]. They consist of a set of problems inspired by flight control and
vehicle management systems, which are representative of flight critical systems.
LMCPS was created by Lockheed Martin Aeronautics to evaluate and improve
the state-of-the-art in formal method toolsets. There are two recent research
works that study the formalization of the LMCPS requirements and their anal-
ysis against the Simulink models. Nejati et al. [47] perform model testing and
checking, while Mavridou et al. [42] perform requirement specification and model
checking. However, none of these works check consistency or realizability. To per-
form realizability analysis, we used the FRETish form of the requirements [41].

We present results for several LMCPS challenges9: 1) 6DoF with DeHavilland

Beaver Autopilot (AP): a simulation of the DeHavilland Beaver airplane with
autopilot (13 requirements); 2) Finite State Machine (FSM): an abstraction

8 We discuss requirements in the original contract notation to make it easy to relate
to Gacek et al. [20]

9 For brevity, we omit challenges for which our work did not yield new information.
Additional analysis results can be found in a supplementary technical report [33].

11

of an advanced autopilot system (13 requirements); 3) Effector Blender (EB):
a control allocation method that calculates the optimal effector configuration (5
requirements); 4) Feedforward Cascade Connectivity Neural Network (NN):
a predictor neural network (4 requirements); 5) Control Loop Regulators (REG):
a regulator’s inner loop architecture (10 requirements); 6) Triplex Signal Monitor

(TSM): a redundancy management system (6 requirements).

6.1 Analysis Outcomes & Lessons Learned

In Table 2 we summarize analysis outcomes and performance times of the Infusion
Manager example, and the GPCA, QFCS, and LMCPS projects. For each project,
we computed the number of SCCs and applied monolithic and compositional
realizability analysis by using both the JSyn and JSyn-vg algorithms. The ex-
periments were run on an Ubuntu VM, 4.5GB RAM, i5-8365U, 4 cores@1.60
GHz. Next, we discuss in detail the analysis results and provide insights.

No decomposition: Our decomposition method returned a single SCC for the
LMCPS NN, LMCPS TSM, and the Infusion Manager specifications. One reason
that contributed to the unsuccessful decomposition was that requirements were
connected through mode variables. In the future, we plan to study whether large
mode-related specifications can be analyzed modularly, by studying the mode-
transition logic separately from the intra-mode requirements.
Challenges in realizability analysis: The nested quantifiers in Def. 2 can be
particularly challenging for state-of-the art solvers. Furthermore, infinite-state
problems are undecidable in general, and the corresponding solvers are not com-
plete. Additionally, many of the LMCPS specifications contain non-linear expres-
sions that are not entirely supported by SMT solvers. For instance, the EB chal-
lenge returned “unknown” due to non-linearities for both JSyn and JSyn-vg
and we were not able to get a result even after decomposing the specification into
2 SCCs. Similarly, in the AP challenge, the monolithic JSyn approach returned
“unknown” due to non-linearities, while JSyn-vg timed out. Even though, the
monolithic approach did not yield results for AP, by decomposing the specifica-
tion we were able to get more meaningful results as explained next.
Successful decomposition: Several of our case studies demonstrated how de-
composition can effectively reduce problem complexity, surpass some of the afore-
mentioned challenges, and lead to significant performance benefits.
– LMCPS AP: Our SCC algorithm decomposed the specification into 3 SCCs. It is
worth noting that while we were able to verify realizability of the two SCCs in
less than 8.7s, JSyn-vg was not able to solve the last SCC and timed-out due to
non-linear expressions. Despite not getting a conclusive answer, decomposition
helped us identify and successfully check linear fragments of the specification.
AP showcases how partial results can be retrieved via decomposition, while iden-
tifying fragments for which the solvers fail due to problem complexity.
– LMCPS FSM: Monolithic realizability analysis returned unrealizable with both
JSyn and JSyn-vg. Decomposition returned 3 SCCs. One was realizable while
the other two were unrealizable. This helped us localize the causes of unrealiz-
ability within the corresponding SCCs. Additionally, decomposing our original

12

specification allowed us to reduce the total analysis time from 1524.82s to less
than 7s with JSyn-vg.
– LMCPS REG: This challenge is highly decomposable: for 10 requirements our
decomposition approach returned 5 SCCs. REG was proven realizable by JSyn-
vg through monolithic checking in 99.52s, while compositional checking needed
a total time of only 5.72s. On the contrary, JSyn timed out during both the
monolithic check and when checking each SCC independently.
– QFCS: The FCC contract contains only 9 requirements, yet JSyn required 53.31s
to declare it as realizable while JSyn-vg could not solve the same problem,
even for a timeout value of 12 hours. Using our decomposition method, we par-
titioned the contract into 7 SCCs, 6 of which contain a single requirement, with
the seventh containing 3. We then ran a realizability check over each component
individually. The decomposition step resulted in a dramatic performance im-
provement: JSyn required only 4.12s to solve the entire problem, and JSyn-vg
solved the six singletons in 6.38s, and timed out for the seventh SCC (FCC-7).
Requirement granularity: To better identify why FCC-7 was so hard to solve,
we examined the requirement definitions: the majority of the requirements in
the project (i.e., both FCC and OSAS) are big conjunctions, where each conjunct
corresponds to the application of user-defined, reusable predicate templates, over
a disjoint set of state variables (FCC contains 6 templates in total, OSAS contains
9). For example, requirement GUARANTEE6 in FCC is defined as 10:

GUARANTEE6
def
= range(𝑣𝑎𝑙𝑖𝑑 𝑎𝑐𝑡𝑠.𝑇𝐿, 𝑎𝑐𝑡𝑠 𝑜𝑢𝑡.𝑇𝐿′, 0.0, 50.0) ∧ . . .

. . . ∧ range(𝑣𝑎𝑙𝑖𝑑 𝑎𝑐𝑡𝑠.𝑆𝑇𝐸𝐸𝑅, 𝑎𝑐𝑡𝑠 𝑜𝑢𝑡.𝑆𝑇𝐸𝐸𝑅′, 0.0, 50.0),

where each conjunct is the application of the template range over pairs of vari-
ables from 𝑣𝑎𝑙𝑖𝑑 𝑎𝑐𝑡𝑠 and 𝑎𝑐𝑡𝑠 𝑜𝑢𝑡. While using big conjunctions was, as com-
mented by the project authors, “out of convenience”, it unsurprisingly resulted
in performance overhead, as the monolithic algorithms needed to consider all
of the conjuncts at the same time (the solver query has 1481 variables), even
though each conjunct can be considered as a separate requirement, and therefore
be a candidate for decomposition.

As such, we split the initial 9 requirements of FCC into subrequirements: for
each requirement, and for each application of a template, we derived a subre-
quirement. The resulting FCC contract, i.e., FCC (inlined) in Table 2, consists
of 79 requirements. The monolithic JSyn run improved significantly (1.11s), but
JSyn-vg still timed out. Decomposing the new contract resulted in 38 SCCs,
which we individually checked for realizability (30 variables per SCC query, on
average). While the compositional run for JSyn was a bit slower (13.10s to-
tal, ∼0.34s per SCC), JSyn-vg was finally able to determine the contract as
realizable, requiring in total only 16.41s (∼0.43s per SCC).

Similarly, we decomposed the original OSAS contract into 2 SCCs, one of
which was a singleton. To our surprise, the singleton was unrealizable, and fur-
ther inspection revealed the cause: the corresponding requirement was declared
as a guarantee, yet contained no state variables. Such a guarantee would always
be unrealizable as the system cannot control inputs. As with FCC, templates

10 We have shortened the element names in the requirement to reduce the overall size.

13

are heavily used in OSAS. Deriving new requirements out of templates resulted
in a new contract, i.e., OSAS (inlined), with 190 requirements, and 21 SCCs
(the monolithic query contained 3035 variables, versus the 151 per SCC query).
Through the decomposition, we were able to determine the contract as unreal-
izable by using both JSyn and JSyn-vg.

To sum up, our compositional approach helped us understand that require-
ment templates can negatively impact analysis performance and decomposition
(e.g., 21 vs. 2 SCCs in OSAS). The QFCS case study stands out from the rest since
we did not enter the requirements in FRET but instead directly used the pro-
vided Lustre specifications. From our experience, it is not common in practice to
write such long requirements (as the ones provided in Lustre) in FRET; usually
FRETish sentences are relatively short. For example, take the GPCA case study,
for which we created 26 FRETish requirements as opposed to the initial 12
requirements. As shown via the inlined requirements, shorter requirements may
enable finer decomposition and thus, return meaningful results.
Algorithm trade-offs: Although the JSyn algorithm is not sound for unreal-
izability results, it returned a result in several cases (e.g., FCC, OSAS) for which
JSyn-vg needed more time or even timed out. We thus realised that the two al-
gorithms can be combined together with our compositional approach to optimize
performance. To this end, JSyn can be used for returning fast sound realizable
results, while JSyn-vg can be effectively used in the compositional context to
determine sound unrealizability without timing out (e.g., OSAS (inlined)).

To conclude, our compositional approach helped us gain significant insights
into the challenges of realizability analysis and possible ways to overcome these.
For example, we understood that the granularity level of specifications plays
an important role since shorter formulas usually enable finer decomposition.
Additionally, we realized that decomposition can be particularly helpful for the
analysis of specifications that are challenging for state-of-the-art solvers, such as
specifications with nested quantifiers and non-linear expressions. In general, our
compositional approach helps us overcome challenges in realizability checking
since it reduces problem complexity and achieves significant performance gains.

6.2 Comparison of decomposition with Finkbeiner et al. [17]

Finkbeiner et al. recently proposed, in an independent effort to ours, two ap-
proaches towards specification decomposition for reactive synthesis. Most rel-
evant to our work is a decomposition algorithm for LTL specifications where,
given an LTL formula, each conjunct of its CNF equivalent occurs in exactly
one subspecification. Similarly to our work, this is achieved by partitioning the
original specification based on dependencies between system variables.

One notable difference between the two approaches is the level at which they
are performed. We perform decomposition at the level of FRET requirements,
rather than their corresponding LTL formulas. One of the reasons for this choice
is that FRET interacts with users at the level of requirements, which promotes
diagnosis and repair. Moreover, as observed in our experiments, when expressing
requirements in the FRET environment, users tend to write small requirements

14

as opposed to conjoining multiple ones in a single FRETish sentence. Neverthe-
less, the FRET formula generation algorithms [24] may create large formulas.
It would be interesting to explore if we can obtain additional gains by perform-
ing decomposition at the level of formulas using Finkbeiner et al.’s algorithms.
In fact, we could try to apply Finkbeiner et al.’s algorithms on the connected
components identified by our algorithm for further decomposition.

Table 3: Comparison with Finkbeiner
et al. [17]. Iden stands for identical.
Benchmark #SCCs #Specs [17] Iden?
Cockpitboard 8 8 4
Gamelogic 4 4 4
LedMatrix 3 3 4
Radarboard 11 11 4
zoo10 1 2 8
generalized buffer 2 2 2 4
generalized buffer 3 2 2 4
shift 8 8 8 4
shift 10 10 10 4
shift 12 12 12 4

To compare the approaches
we used ten benchmarks from
the SYNTCOMP 2020 competi-
tion [27] 11, for which the decompo-
sition proposed by Finkbeiner et al.
yielded exemplary results [17]. Since
neither JSyn nor JSyn-vg support
liveness properties, a direct compar-
ison regarding realizability results is
not possible. As such, we focused on
comparing the quality of decompo-
sition. As shown in Table 3, our decomposition procedure yielded identical re-
sults with Finkbeiner et al. for all but the zoo10 benchmark 12. We attribute
the discrepancy to an optimization in the algorithm by Finkbeiner et al., which
yields two subspecifications whose assumptions are not equivalent to each other.
It is currently unclear to us whether this decomposition is compatible with our
formal framework, and we plan on revisiting this in future work.

7 Related Work

Realizability checking of specifications is a well-established field of research in
formal methods, and is strongly tied to the area of reactive synthesis. Pnueli
and Rosner were the first to show that the complexity of the problem is double-
exponential (2-EXPTIME) for propositional specification [50], while further ad-
vancements in the General Reactivity of Rank 1 (GR(1)) fragment of LTL showed
that a polynomial time algorithm exists [49,6]. In the context of propositional
logic, various tools have been proposed towards the realizability analysis of re-
active systems, some of which follow a user-guided approach [53], while others
serve as general requirements analysis and debugging frameworks [5,37,14]. Our
work addresses the same problem, but in the context of potentially infinite-state
specifications, where scalability is a major concern.

Specification decomposition is also a research problem of relevance to formal
methods and more specifically formal verification, with previous work on proce-
dures that factorize the specification into smaller problems [7,21,48]. The same
also applies in the context of synthesis where compositional techniques have been
proposed, taking advantage of Binary Decision Diagrams, And-Inverter Graphs
and Extended Finite-State Machines to restructure the original problem into

11 SYNTCOMP 2020 benchmarks: https://github.com/SYNTCOMP/benchmarks
12 The authors provided us with their resulting subspecifications.

15

https://github.com/SYNTCOMP/benchmarks

factored formulas [28,56,8,43]. In comparison to this work, our proposed algo-
rithm to compute SCCs is orthogonal and does not rely on solvers to perform the
decomposition. Furthermore, our approach is not affected by the order in which
specification elements are processed and as such does not require the application
of sophisticated ordering heuristics [56,44].

The diagnosis of unrealizable specifications has also been extensively ex-
plored, primarily in the context of computing minimal sets of conflicting speci-
fication elements, commonly referred to as unrealizable cores. In this paper, we
rely on the model-based diagnosis technique proposed by Kónighofer et al. [32] to
compute all minimal unrealizable cores. The technique is modular with respect
to the way that a single minimal conflict is computed, allowing for different im-
plementations to be considered. FRET supports both delta debugging [57] and
a linear algorithm proposed by Cimatti et al. [11] to compute minimal conflicts.
By default, we use delta debugging as it has been shown to perform better, on
average. Recently, Maoz et al. proposed QuickCore for computing unrealiz-
able cores, with optimizations based on specific properties of GR(1) specifica-
tions [39]. Within the context of GR(1) specifications, QuickCore was shown
to perform better than delta debugging. In the future, we intend to evaluate
the applicability of QuickCore within FRET.

Akin to realizability checking, prior work exists in other aspects of require-
ment analysis, such as rt-inconsistency [51,52,34], well-separation [36,31] and
inherent vacuity [38,19]. Note that in the case of rt-inconsistency, an unrealiz-
able contract is also rt-inconsistent but not necessarily vice-versa. It would be
interesting to explore whether SCC computation could also benefit these types
of analysis.

8 Conclusion

We presented a new realizability analysis framework, developed as an extension
of FRET. Our partial contracts approach can be applied as a preprocessing step
on a variety of realizability analysis tools, by taking advantage of a specification’s
modularity over disjoint subsets of requirements. We evaluated our approach
with state-of-the-art infinite-state realizability algorithms on several industrial
case studies. We obtained encouraging results in reducing problem complexity
and significantly improving analysis performance.

We focused on conditions under which the realizability of a global contract
can equivalently be decomposed into the realizability of its partial contracts. In
the future, we plan to study if it is possible to relax the requirement of equivalent
partial contract assumptions in Theorem 2. It is worthwhile noting that, for
non-interfering contract sets, partial contract realizability always implies global
contract realizability, but not vice versa. So to establish a positive realizability
result, we can relax the conditions for decomposition, at the expense of losing the
capability to call unrealizability. We plan to explore such trade-offs in practice.

16

References

1. Consortia for improving medicine within innovation and technology, https://

cimit.org/home

2. Generic infusion pump research project, https://rtg.cis.upenn.edu/gip/
3. Backes, J., Cofer, D., Miller, S., Whalen, M.W.: Requirements analysis of a quad-

redundant flight control system. In: Havelund, K., Holzmann, G., Joshi, R. (eds.)
NASA Formal Methods. Lecture Notes in Computer Science, vol. 9058, pp. 82–
96. Springer International Publishing (2015). https://doi.org/10.1007/978-3-319-
17524-9 7, http://dx.doi.org/10.1007/978-3-319-17524-9_7

4. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J.B., Reinkemeier,
P., Sangiovanni-Vincentelli, A., Damm, W., Henzinger, T.A., Larsen, K.G., et al.:
Contracts for system design (2018)

5. Bloem, R., Cimatti, A., Greimel, K., Hofferek, G., Könighofer, R., Roveri, M.,
Schuppan, V., Seeber, R.: Ratsy–a new requirements analysis tool with synthe-
sis. In: International Conference on Computer Aided Verification. pp. 425–429.
Springer (2010)

6. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive
(1) designs. Journal of Computer and System Sciences 78(3), 911–938 (2012)

7. Burch, J.R., Clarke, E.M., Long, D.E.: Representing circuits more efficiently in
symbolic model checking. In: Proceedings of the 28th ACM/IEEE Design Automa-
tion Conference. pp. 403–407. Association for Computing Machinery, New York,
NY, USA (1991). https://doi.org/10.1145/127601.127702, https://doi.org/10.
1145/127601.127702

8. Chakraborty, S., Fried, D., Tabajara, L.M., Vardi, M.Y.: Functional synthesis via
input-output separation. In: 2018 Formal Methods in Computer Aided Design (FM-
CAD). pp. 1–9. IEEE (2018)

9. Champion, A., Gurfinkel, A., Kahsai, T., Tinelli, C.: CoCoSpec: A mode-aware
contract language for reactive systems. In: International Conference on Software
Engineering and Formal Methods. pp. 347–366. Springer (2016)

10. Champion, A., Mebsout, A., Sticksel, C., Tinelli, C.: The Kind 2 model checker. In:
International Conference on Computer Aided Verification. pp. 510–517. Springer
(2016)

11. Cimatti, A., Roveri, M., Schuppan, V., Tchaltsev, A.: Diagnostic information for
realizability. In: International Workshop on Verification, Model Checking, and Ab-
stract Interpretation. pp. 52–67. Springer (2008)

12. Cofer, D., Gacek, A., Miller, S., Whalen, M.W., LaValley, B., Sha, L.: Composi-
tional verification of architectural models. In: NASA Formal Methods Symposium.
pp. 126–140. Springer (2012)

13. Damm, W., Hungar, H., Josko, B., Peikenkamp, T., Stierand, I.: Using contract-
based component specifications for virtual integration testing and architecture de-
sign. In: 2011 Design, Automation & Test in Europe. pp. 1–6. IEEE (2011)

14. Ehlers, R., Raman, V.: Slugs: Extensible GR (1) synthesis. In: International Con-
ference on Computer Aided Verification. pp. 333–339. Springer (2016)

15. Elliott, C.: On example models and challenges ahead for the evaluation of complex
cyber-physical systems with state of the art formal methods V&V, Lockheed Mar-
tin Skunk Works. In: Laboratory, A.F.R. (ed.) Safe & Secure Systems and Software
Symposium (S5) (2015)

16. Elliott, C.: An example set of cyber-physical V&V challenges for S5, Lockheed
Martin Skunk Works. In: Laboratory, A.F.R. (ed.) Safe & Secure Systems and
Software Symposium (S5) (2016)

17

https://cimit.org/home
https://cimit.org/home
https://rtg.cis.upenn.edu/gip/
https://doi.org/10.1007/978-3-319-17524-9_7
https://doi.org/10.1007/978-3-319-17524-9_7
http://dx.doi.org/10.1007/978-3-319-17524-9_7
https://doi.org/10.1145/127601.127702
https://doi.org/10.1145/127601.127702
https://doi.org/10.1145/127601.127702

17. Finkbeiner, B., Geier, G., Passing, N.: Specification decomposition for reactive
synthesis. In: NASA Formal Methods Symposium. pp. 113–130. Springer (2021)

18. Firman, E., Maoz, S., Ringert, J.O.: Performance heuristics for GR (1) synthesis
and related algorithms. Acta informatica 57(1), 37–79 (2020)

19. Fisman, D., Kupferman, O., Sheinvald-Faragy, S., Vardi, M.Y.: A framework for
inherent vacuity. In: Haifa Verification Conference. pp. 7–22. Springer (2008)

20. Gacek, A., Katis, A., Whalen, M.W., Backes, J., Cofer, D.: Towards Realizability
Checking of Contracts Using Theories. In: NFM. LNCS, vol. 9058, pp. 173–187.
Springer (2015)

21. Geist, D., Beer, I.: Efficient model checking by automated ordering of transition
relation partitions. In: International Conference on Computer Aided Verification.
pp. 299–310. Springer (1994)

22. Giannakopoulou, D., Katis, A., Mavridou, A., Pressburger: Compositional Real-
izability Checking within FRET. NASA Technical Memorandum (March 2021),
https://ti.arc.nasa.gov/publications/20210013008/download/, 32 pages

23. Giannakopoulou, D., Pressburger, T., Mavridou, A., Rhein, J., Schumann, J.,
Shi, N.: Formal requirements elicitation with FRET. In: Joint Proceedings of
REFSQ-2020 Workshops, Doctoral Symposium, Live Studies Track, and Poster
Track co-located with the 26th International Conference on Requirements En-
gineering: Foundation for Software Quality (REFSQ 2020), Pisa, Italy, March
24, 2020. CEUR Workshop Proceedings, vol. 2584. CEUR-WS.org (2020), http:
//ceur-ws.org/Vol-2584/PT-paper4.pdf

24. Giannakopoulou, D., Pressburger, T., Mavridou, A., Schumann, J.:
Automated formalization of structured natural language require-
ments. Information and Software Technology 137, 106590 (2021).
https://doi.org/https://doi.org/10.1016/j.infsof.2021.106590, https://www.

sciencedirect.com/science/article/pii/S0950584921000707

25. Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipula-
tion. Communications of the ACM 16(6), 372–378 (1973)

26. Hueschen, R.M.: Development of the transport class model (tcm) aircraft simula-
tion from a sub-scale generic transport model (gtm) simulation (2011)

27. Jacobs, S., Bloem, R., Brenguier, R., Ehlers, R., Hell, T., Könighofer, R., Pérez,
G.A., Raskin, J.F., Ryzhyk, L., Sankur, O., et al.: The first reactive synthesis com-
petition (syntcomp 2014). International journal on software tools for technology
transfer 19(3), 367–390 (2017)

28. John, A.K., Shah, S., Chakraborty, S., Trivedi, A., Akshay, S.: Skolem functions for
factored formulas. In: 2015 Formal Methods in Computer-Aided Design (FMCAD).
pp. 73–80. IEEE (2015)

29. Katis, A., Fedyukovich, G., Guo, H., Gacek, A., Backes, J., Gurfinkel, A., Whalen,
M.W.: Validity-guided synthesis of reactive systems from assume-guarantee con-
tracts. In: International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. pp. 176–193. Springer (2018)

30. Katis, A., Gacek, A., Whalen, M.W.: Towards synthesis from assume-guarantee
contracts involving infinite theories: a preliminary report. In: 4th Intl. Conf. on
Formal Methods in Software Engineering (FormaliSE). pp. 36–41. IEEE (2016)

31. Klein, U., Pnueli, A.: Revisiting synthesis of GR (1) specifications. In: Haifa Veri-
fication Conference. pp. 161–181. Springer (2010)

32. Könighofer, R., Hofferek, G., Bloem, R.: Debugging formal specifications: a prac-
tical approach using model-based diagnosis and counterstrategies. International
Journal on Software Tools for Technology Transfer 15(5-6), 563–583 (2013)

18

https://ti.arc.nasa.gov/publications/20210013008/download/
http://ceur-ws.org/Vol-2584/PT-paper4.pdf
http://ceur-ws.org/Vol-2584/PT-paper4.pdf
https://doi.org/https://doi.org/10.1016/j.infsof.2021.106590
https://www.sciencedirect.com/science/article/pii/S0950584921000707
https://www.sciencedirect.com/science/article/pii/S0950584921000707

33. Kooi, D., Mavridou, A.: Integrating Realizability Checking in FRET. NASA
Technical Memorandum (June 2019), https://ntrs.nasa.gov/api/citations/

20190033980/downloads/20190033980.pdf, 28 pages
34. Langenfeld, V., Dietsch, D., Westphal, B., Hoenicke, J., Post, A.: Scal-

able analysis of real-time requirements. In: 2019 IEEE 27th Interna-
tional Requirements Engineering Conference (RE). pp. 234–244 (2019).
https://doi.org/10.1109/RE.2019.00033

35. Lúcio, L., Rahman, S., Cheng, C.H., Mavin, A.: Just formal enough? automated
analysis of EARS requirements. In: NASA Formal Methods Symposium. pp. 427–
434. Springer (2017)

36. Maoz, S., Ringert, J.O.: On well-separation of GR (1) specifications. In: Proceed-
ings of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering. pp. 362–372 (2016)

37. Maoz, S., Ringert, J.O.: Spectra: a specification language for reactive systems.
arXiv preprint arXiv:1904.06668 (2019)

38. Maoz, S., Shalom, R.: Inherent vacuity for GR (1) specifications. In: Proceedings
of the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. pp. 99–110 (2020)

39. Maoz, S., Shalom, R.: Unrealizable cores for reactive systems specifications. In:
2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
pp. 25–36. IEEE (2021)

40. Mavridou, A., Bourbouh, H., Garoche, P.L., Giannakopoulou, D., Pressburger,
T., Schumann, J.: Bridging the Gap Between Requirements and Simulink Model
Analysis. In: Joint Proceedings of REFSQ-2020 Workshops, Doctoral Symposium,
Live Studies Track, and Poster Track co-located with the 26th International Con-
ference on Requirements Engineering: Foundation for Software Quality (REFSQ
2020), Pisa, Italy, March 24, 2020. CEURWorkshop Proceedings, vol. 2584. CEUR-
WS.org (2020), http://ceur-ws.org/Vol-2584/PT-paper9.pdf

41. Mavridou, A., Bourbouh, H., Garoche, P.L., Hejase, M.: Evaluation of the FRET
and CoCoSim tools on the ten Lockheed Martin cyber-physical challenge problems.
Tech. rep., NASA (Oct 2019), 84 pages

42. Mavridou, A., Bourbouh, H., Giannakopoulou, D., Pressburger, T., Hejase, M.,
Garoche, P.L., Schumann, J.: The ten Lockheed Martin cyber-physical challenges:
Formalized, analyzed, and explained. In: Proceedings of the 2020 28th IEEE In-
ternational Requirements Engineering Conference (2020)

43. Mohajerani, S., Malik, R., Fabian, M.: A framework for compositional synthesis of
modular nonblocking supervisors. IEEE Transactions on Automatic Control 59(1),
150–162 (2013)

44. Mohajerani, S., Malik, R., Fabian, M.: Compositional synthesis of supervisors in
the form of state machines and state maps. Automatica 76, 277–281 (2017)

45. Murugesan, A., Sokolsky, O., Rayadurgam, S., Whalen, M., Heimdahl, M., Lee, I.:
Linking Abstract Analysis to Concrete Design: A Hierarchical Approach to Verify
Medical CPS Safety. Proceedings of ICCPS’14 (April 2014)

46. Murugesan, A., Whalen, M.W., Rayadurgam, S., Heimdahl, M.P.: Compositional
verification of a medical device system. In: ACM Int’l Conf. on High Integrity
Language Technology (HILT) 2013. ACM (November 2013)

47. Nejati, S., Gaaloul, K., Menghi, C., Briand, L.C., Foster, S., Wolfe, D.: Evaluating
model testing and model checking for finding requirements violations in simulink
models. In: Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing. pp. 1015–1025 (2019)

19

https://ntrs.nasa.gov/api/citations/20190033980/downloads/20190033980.pdf
https://ntrs.nasa.gov/api/citations/20190033980/downloads/20190033980.pdf
https://doi.org/10.1109/RE.2019.00033
http://ceur-ws.org/Vol-2584/PT-paper9.pdf

48. Pan, G., Vardi, M.Y.: Symbolic techniques in satisfiability solving. In: SAT 2005,
pp. 25–50. Springer (2005)

49. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of Reactive(1) Designs. In: VMCAI.
LNCS, vol. 3855, pp. 364–380. Springer (2006)

50. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings
of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. pp. 179–190. ACM (1989)

51. Post, A., Hoenicke, J., Podelski, A.: rt-inconsistency: A new property for real-
time requirements. In: Giannakopoulou, D., Orejas, F. (eds.) Fundamental Ap-
proaches to Software Engineering - 14th International Conference, FASE 2011,
Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011. Pro-
ceedings. Lecture Notes in Computer Science, vol. 6603, pp. 34–49. Springer
(2011). https://doi.org/10.1007/978-3-642-19811-3 4, https://doi.org/10.1007/
978-3-642-19811-3_4

52. Roth, S.: Erweiterte Konsistenzanalyse für Anforderune (Checking Extended Con-
sistency for Requirements). Master’s thesis, Karlsruhe Institute of Technology
(2011), see Section 3.2.

53. Ryzhyk, L., Chubb, P., Kuz, I., Le Sueur, E., Heiser, G.: Automatic device driver
synthesis with termite. In: Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles. pp. 73–86. ACM (2009)

54. Skiena, S.S.: The algorithm design manual: Text, vol. 1. Springer Science & Busi-
ness Media (1998)

55. Stachtiari, E., Mavridou, A., Katsaros, P., Bliudze, S., Sifakis, J.: Early validation
of system requirements and design through correctness-by-construction. Journal of
Systems and Software 145, 52–78 (2018)

56. Tabajara, L.M., Vardi, M.Y.: Factored boolean functional synthesis. In: 2017 For-
mal Methods in Computer Aided Design (FMCAD). pp. 124–131. IEEE (2017)

57. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE
Transactions on Software Engineering 28(2), 183–200 (2002)

20

https://doi.org/10.1007/978-3-642-19811-3_4
https://doi.org/10.1007/978-3-642-19811-3_4
https://doi.org/10.1007/978-3-642-19811-3_4

	From Partial to Global Assume-Guarantee Contracts: Compositional Realizability Analysis in FRET

